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DEFINITION 9.1. Les operations elementaires sur les lignes d’une matrice sont les applications
suivantes de Mg xq(K) vers My «q(K): pouri,j € {1,---,d'} et A€ K* et p € K

(I) Transposition: Echanger deux lignes i # j < d' de M:

(II) Dilatation: Multiplier la i-eme ligne par un scalaire A # 0:
Lflj — )\LL

(1II) Combinaison Lineaire: Additionner a la ligne i un multiple scalaire de la la j-ieme ligne pour
1 £ 7 peK
L/,f — L, + /LLJ'



PROPOSITION 9.1. Ces trois operations sont des applications lineaires bijectives

(I), (II), (III) : Mdfxd(K) — Md'xd(K)-

PROPOSITION 9.2. Les trois operations elementaires sont obtenues par multiplication a gauche
de M par des matrices convenables: pour 1 <i# j < d

(I) Tij-. M — T'ZJM
(II) Di’)\.o M — Di,)\.M
(III) Clij,“.O M — Clij,u.M.

ou les matrices carrees T;;, D; , Clij, € My (K) sont definies par:
Tij; =Idg — By — Ej; + By + Ej;.
Diyx=Idg + (A —1).E;, A#0
Cliju=1de +p.Eij, i #J ou p# —1 si1=j.
DEFINITION 9.2. Les matrices
Tijy Dix, X#0, Cli;,

pouri,j <d, N#0, et sii=j, u# —1 sont appellees matrices de transformations elementaires.



DEFINITION 9.3. On dit que N est ligne-equivalente a M ssi il existe une suite de transformations
elementaires qui transforme M en N.

— De maniere equivalente, N est ligne-equivalente a M ssi il existe une suite finie de matrices
des transformations elementaires telle que N est obtenue a partir de M par multiplications a gauche
par cette suite de matrices.

~

|| | O
2 22| O |
\2\21 O




PROPOSITION 9.3. La relation etre "ligne-equivalente” est une relation d’equivalence sur My « q(K).
— De plus deux matrices M, N ligne-equivalentes sont equivalentes au sens de la notion d’equivalence
de deuxr matrices de la Definition 7.10.

COROLLAIRE. St M et N sont lignes equivalentes alors
rg(M) = rg(N).

w Pon ceu:he, u,iva,()lml'ﬂ.
\@‘{*\@ %} Q\ém.-jc? VA—QM_"



PROPOSITION 9.4. Si N € My yq(K) est ligne-equivalente a M alors toute ligne de N est
combinaison lineaire des lignes de M :

Vi < d', Lig;(N) € (Lig,(M),--- ,Lig, (M)) c K¢

et inversement les lignes de M sont combinaisons lineaires des lignes de N. En particulier les SE'V
engendres par les lignes de M et de N sont les memes

(Ligy (M), -~ ,Ligy (M)) = <Lig1(M), s ,Ligd/(M» c K¢
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DEFINITION 9.4. Une matrice M = (m;;) € Mg «a(K) est echelonnee si elle est nulle ou bien si
(1) llexiste l <r<detl<j <---<jr<d tels que
— Pour la ligne Ly, le premier terme non-nul est le ji-ieme: on a my; = 0 pour tout
J <Jji1 et myj #0,
— Pour la ligne Lo, le premier terme non-nul est le ja-ieme: on a mg; = 0 pour tout
J < J2 et maj, #0,

— Pour la ligne L,, le premier terme non-nul est le j.-ieme: on a m,; = 0 pour tout
J<ijr etmyj #0
(2) Sir <d les lignes L,11,--+ ,Lqg sont toutes nulles.

St M est non-nulle les j; < --- < j, sont appeles les echelons de M et les m;j,, 1 <1 < r sont les
pivots de M.




= O O O

12 1M13
0 0
0 0
0 0
0 0

T4

m24 e o o
0 mss
0 0
0 0



DEFINITION 9.5. Une matrice est echelonnee reduite si le seul coefficient non-nul d’une colonne
contenant un pivot est le pivot lui-meme et il vaut 1:

— pour tout 1 =1,---,7r
mwzzl

— Pour touti=1,---,rettout 1 <i' #1<d, ona
mi/jizO.

o O O O
o O O -
©©©§
v
o O = O
O = O O
3
Q,



THEOREME 9.1 (Gauss). Toute matrice est ligne-equivalente a une matrice echelonnee reduite.

PROPOSITION 9.5. Deux matrices ligne-equivalentes et echelonnees reduites sont egales.

COROLLAIRE 9.1. (Unicite de la forme echelonne reduite) Soit M € My xq(K) une matrice alors

M est ligne-equivalente a une unique matrice echelonnee reduite (qu’on appelle la forme echelonnee
reduite de M ).



' ca/{'w ow)
A



Colod du R%

PROPOSITION 9.6. Si M et N sont lignes equivalentes
rg(M) = rg(N).

Ensuite on a

PROPOSITION 9.7. 5% R est echelonnee avec r echelons alors

rg(R) = .
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PROPOSITION 9.8 (Critere d’inversibilite par operations elementaires). Soit M € My(K) une
matrice carree alors M est inversible ssi M est ligne equivalente a la matrice identite 1dg.

T,-T,T,... M
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THEOREME 9.2. Le groupe lineaire GL4(K) est engendre par les matrices des transformations
elementaires

Ti,j:Di,/\: Cl‘i,j,,ua 2*7 < da A?N € I(* A 7é Oa et 522:77 M 7£ —1.

En d’autres termes (puisque l’ensemble des matrices de transformations elementaires est stable par
inverse) tout matrice M € GLq(K) s’ecrit comme un produit fini de ces matrices.

Prewve . S\ ﬂ 64* \V\\MS\\er' IQ QX{J&
T ... /Tv\ Ju mafvon do. [CLs




Etvackion o wne
%Wa)cw ‘M




Es

%; 3 W, - /WL} SRV
W = Vect %C \V4

Got B wwe,lawx—ng, \/ Gm:c@ud « |
?M QM'S do V avec desg rex}am.s lwéuw K

A
le" V = K



LL.-.—. LB (Nl)éK Lzl..-,?.
D?m’c Me HJ,Q*A (R)  fomee ol
ZEINEE—
\LQ“ ﬂ{) A Ko,



Soﬁ > Q«L &O\M LG\J\QRM\wég M&\u*

V‘Qd! QL
wh de pmh&
R - s \Q=v8 N

:a‘:W\ V\l






cO\me N,A'wv\, cwp(&mﬂ'&l‘mi ez,s

-
M U bone
L%( @-0\) d cw\im %LLoQQ. K
f)GWL c{\um *PW)

Y72 Lo 'owo‘}ﬁz,R




PROPOSITION 9.9 (Description matricielle d’une base d'un SEV). Soit M € M;x4(K) la matrice
dont les | lignes sont formees des vecteurs lignes L;, © < [. Soit R la matrice echelonee reduite
associee a M et

L =Lig,(R), i <
[’ensemble des lignes de R alors si R possede r echelons on a
dimW =r

et les vecteurs de V' correspondants aux r premieres lignes

PBw = {w] = Lig (L)), i <7}

forment une base de W (et les | — r autres vecteurs sont nuls).
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THEOREME 9.4 (Resolution d’equations dans les espaces vectoriels). Soit ¢ : V — W wune
application lineaire entre deuxr espaces vectoriels de dimension finie. Pour tout w € W, on pose

Sol, ( @E){IU} ={veV, pv)=w}CV

la pretmage de w par ¢. En particulier Sol,(Ow ) = ker ¢. Alors Sol,(w) est

— soit w &€ (V) et Sol,(w) est ’ensemble vide,
— soit w € (V) et il existe v° € V tel que o(v°) = w et alors

Sol, (w) = v° + Sol,(04) = v° + ker p = {vg + k, k € ker ¢}.

Prewve - < N¢<€('\/> goQ (ﬂ): ¢
- 9 W& LQ w\s"a J 1 (\)D
0 Y SA%(\\,‘) 5 1 ?

B O CP v-v )= OG- (Q\Io)




— W -W ON

= V- € kuc()
\ € \/04»\10/» \I+\¢mcI)
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COROLLAIRE 9.2. Awvec les notations precedente, on a en particulier

— sidimker¢ = 0 (cad. kerp = {0y} et ¢ est injective), Sol,(w) possede 0 ou 1 element
pour tout w.

— sirgp = dimp(V) = dim(W) (cad. ¢(V) = W et ¢ est surjective) Sol,(w) possede au
moins un element pour tout w.

— SidimV =dim W et que ¢ est ou bien injective ou bien surjective, ¢ est bijective et pour
tout w, Sol,(w) possede exactement un element.






= Col(w)
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DEFINITION 9.7. Les inconnues v;, pour j;, 1 <i < r etant echelon sont appelles
principales du systeme L onnues v; pour j < d qui n’est pas un eche Z nt appelles
lb s du systeme

Prn )xmoaa.r)u, (’L VBS][UML (91 fwseqnl =0 )

L=v3) .. d

s\a/&"( de J@xev uh,lo)+VdivaM by vakeunn

Mconnuﬁ.s LV% ei" de MWAA%
QL Véﬁ* ﬂuvom\' (’M MCoV\Y\M meC\rppL

| Qo\\u’}

e ‘m\'cv&\% &\ W= O cLPa va o'oww&r
Qﬂ/\ Qﬂ's . vw/ow\
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DEFINITION 9.8. Les operations elementaires sur les colonnes d’une matrice sont les applications
suivantes de My q(K) vers Mg q(K): pouri,j € {1,--- ,d} et \€ K* et p € K
(I) Transposition: Echanger deuz colonnes i # j < d' de M:
C; «— C;j
(1I) Dilatation: Multiplier la i-eme colonne par un scalaire \ # 0:

(IIT) Combinaison Lineaire: Additionner a la colonne i un multiple scalaire de la la j-ieme colonne
pouri # j: p € K
C; = C; + /.LC]'

Ces transformations sont appellees transformations elementaires sur les colonnes d’une matrice.



PROPOSITION 9.10. Une operation elementaire sur les colonnes d’une matrice M equivaut a une
operation elementaire sur les lignes de M' = "M.
Une telle transformation est donnee par multiplication par la droite

M — M.'T,

par la transposee d’une matrice de transformation elementaire sur les lignes T; en composant les
operations suivantes

M M — T,.0M — "0 M = MYT, = M.T,.

Il en resulte que des transformations sont bijectives et lineaires.



DEFINITION 9.9. On dit que N est colonne-equivalente a M ssi il existe une suite de transfor-
mations elementaires qui transforme M en N.
— De maniere equivalente, N est colonne-equivalente a M ssi il existe une suite finie de matri-

ces de transformations elementaires (sur les colonnes) telle que N est obtenue a partir de M par
multiplications a droite par cette suite de matrices.

PROPOSITION 9.11. La relation etre ”colonne-equivalente” est une relation d’equivalence sur
Md’xd(K).

— De plus deux matrices M, N colonnes-equivalentes sont equivalentes au sens de la notion
d’equivalence de deux matrices de la Definition 7.10. En particulier elles ont meme rang.
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That object was to present the subject as a continuous chain of
arquments, separated from all accessories of explanation or

Wllustration, a form which I venture to think better suited for a
treatise on exact science than the semi -colloquial semai-logical

form often adopted by Mathematical writers.
Lewis Carroll (1867)
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DEFINITION 10.1. Soit V' un K-espace vectoriel et n > 1 un entier. Une forme multilineaire en
n variables sur V' est une application

vn by K
A
(vla'°' JU‘n) —> A({Ula”' 3U’n,)
telle que pour tout i = 1,--- ,n et tout choix de n — 1 vecteurs v; € V, j # i, Uapplication A

“restreinte a la i-iteme composante”
v, €V Avy, - 05, ,0,) €K
est lineaire:
Ay, -+ A+ 05, 0n) = MA(v1, 0,0 0n) + Avg, o 0k up).

L’ensemble des formes multilineaires en n variables sur V est note

Mult™(V, K) ou bien (V*)®"(notation ”produit tensoriel”).
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K = g\ A, x,:)-r /\LX,,x,_)
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PROPOSITION 10.1. L’ensemble Mult™ (V, K) = (V*)®" des formes multilineaires en n vari-
ables est un K -espace vectoriel quand on le muni de [’addition et de la multiplication par les scalaires
usuelle pour les fonctions a valeurs dans K: VA, Z € (V*)®"

()\A+E)(U1, zvn) T )\A(vl;"' 7U’n) +E(U17"' :vn)'

P 2% N =€ M (YR)
/\ . (v )/VL) —D A(\/,/\/L) /lé K
:.: - (\/)/ \,7.) ~33(V}/VL)

(WASZ): (a0 )—> AN, v, ) + =3, v)




@m m‘\’ W\c‘ /\ |\ o= h]l efmzafwe,

e v, ejw VZJ
% /\*E>( P‘Q""/)/"L)
=) /\( v)\b-}\/;/\é)-r = (P%wﬁ)’ \/9,)
% ¥ A(‘ﬁ/"f.)*)/\{"/:/vl)
+ HE(\’)/Vﬂ.) + E(VJ,Vz)



= p 0\ Aﬁ}(\b,v,) 4 ()\/\E)(v)/vi)
Dot e Ad = cod lineaves ue

VL On W\M‘\'M CI\A.Q/

(/\/\+_)( Vi, P Vz.‘”/z.) =N (A Aff)(\ljljva,)



THEOREME 10.1 (Dimension et base de 'espace des formes multilineaires). Soit d = dimV/,
B = {e1, - ,eq} CV une base et B* = {e},---,e5} C V* la base duale. Alors V*®" est de
dimension finie egale a d™; une base de V*®" est donnee par l'ensemble des formes multilineaires
de la forme

e; ®---®e; , quand ji,- -, jn parcourent {1,---  d}.
On note cette base
(0 *)®n - {e;l Q& e;'f"‘, (jlv T ajn) S [1 d]n}'

Pour tout A € (V*)®™ on a la decomposition

A= D Mg )e), @9,

S n<d

»a-x’h,é

: s\ OV a % ¥
5in=2 (B ) = ?e/@e//eﬁ%u%l@ &,
Pewve cus n=2, gout /\ € Hmﬂm(\/ K)

A V V’L) — /\(")/VL)
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